Doslov

V úvodní kapitole jsme vyjádřili naději, že kritika současných teorií vzniku života bude prvním krokem směřujícím k nové, přijatelnější teorii. Dosud jsme se však nevěnovali jiným možnostem. V našem doslovu se tedy zmíníme o pěti alternativních názorech, které se objevily v literatuře týkající se vzniku života. Jsou to:

1. Nové přírodní zákony
2. panspermie
3. řízená panspermie
4. Jedinečné stvoření stvořitelem z vesmíru
5. Jedinečné stvoření stvořitelem, který je mimo vesmír

Troufáme si tvrdit, že tyto teorie budou i v budoucnosti uvedeny hlavními teoriemi vzniku života. Než však se jimi budeme zabývat dovolte nám uvést některé důležité výsledky naší analýzy výzkumu vzniku života. Jakákoliv uspokojivá alternativa by měla vysvětlovat tyto faktory:

1. Hromadí se důkazy, že na dávné Zemi a v její atmosféře byly oxidující podmínky.

2. V atmosféře a v oceánu prebiotického světa převládal rozklad nad syntézou.

3. Doba mezi zchladnutím Země a prvními známkami života se neustále zkracuje (nyní je < 170 milionů let).

4. Geochemická analýza dokazuje, že prekambrické sedimenty obsahují velmi málo dusíku.

5. Existuje pozorovatelná hranice mezi tím, co vzniklo v laboratoři jako výsledek samotného přírodního procesu a tím, co vzniklo jako důsledek zásahu badatele.

6. Podle naší zkušenosti pouze biotické procesy (enzymy, DNA atd.) a vliv badatele umožňují využití toku energie k tvorbě biospecifických makromolekul.

7. Skutečné živé buňky jsou pozoruhodné komplexy dobře sehraných dynamických struktur obsahujících enzymy, DNA, fosfolipidy, sacharidy atd., jimž se tzv. protobuňky podobají jen povrchně.

Nové přírodní zákony*

* Tato část intenzivně čerpá z teoretické analýzy Johna C. Waltona uvedené v článku "Organization and the origin of life," v Origins, díl 4, č. 1, 1977, 16 - 35.

Setkali jsme se s neúspěchem a snad neschopností v současné době známých základních fyzikálních a chemických zákonů vysvětlit vznik biologických struktur. Tato skutečnost inspirovala myšlenku, že musí být objeveny nové fyzikální principy, které by tento jev přiměřeně vysvětlily. Elsasser1 argumentoval tím, že skupiny živých struktur jsou příliš malé, než aby bylo možné na ně aplikovat fyzikální statistické metody, a je tedy nutné nalézt místo nich nové přírodní zákony. Vzpomeňte, že podobný návrh předložil i Murray Eden na sympoziu ve Wistarově ústavu, jak bylo uvedeno v kapitole 1. Ve stejném duchu předpokládal Garstens2, že aplikace statistické mechaniky na biologické systémy vyžaduje novou skupinu pomocných předpokladů odlišných od těch, které jsou ve fyzice tradičně používány. Mora3 souhlasí s tím, že nové zákony jsou nezbytné, a poukazuje přitom na nemožnost souladu mezi statistickými a termodynamickými prostředky a tvorbou živých systémů.

Použitím kvantové mechaniky vypočítal Wigner4 pravděpodobnost, že z interakcí živého organismu a výživných látek vznikne jiný, identický organizmus, za předpokladu, že je tato interakce řízena náhodnou symetrickou Hamiltonovou maticí. Stejný předpoklad využil von Neumann5, aby dokázal, že druhá věta termodynamiky je důsledkem kvantové mechaniky. Při sčítání počtu rovnic popisujících tyto interakce zjistil Wigner, že značně převyšují počet neznámých, které popisovaly konečný stav živin a dvou organismů. Wignerova analýza ukázala nulovou pravděpodobnost existence jakéhokoliv stavu živiny, který by umožnil zmnožení organismu. Řekl: "Byl by to zázrak" a naznačil, že interakce organismu s živinou byla úmyslně "ušita na míru" tak, aby menší počet neznámých vyhovoval většímu počtu rovnic.6 Interakce živých systémů se živinami není samozřejmě náhodná, ale je řízena prostřednictvím molekuly DNA. Prebiotické systémy však nejsou takto vybaveny a stojí před problémem náhody, na který poukázal Wigner.

Landsberg7 také použil kvantovou mechaniku pro ověření otázky spontánní tvorby a reprodukce organismů. Zjistil, že rozšíří-li se Wignerova analýza i na nerovnovážné systémy, jsou pravděpodobnosti větší než nula, ale stále velmi malé. Na základě prací Wignera a Landsberga můžeme uzavřít, že kvantová mechanika nepopírá vznik života, ale naznačuje, že život nemohl vzniknout jako výsledek náhodných interakcí probíhajících v neživé hmotě. Z toho vyplývá, že nějaké až dosud téměř nepoznané "principy organizace" musí být zodpovědné za "řízenou" interakci chemických látek vedoucí k tvorbě živých systémů. Tento závěr, plynoucí z kvantové mechaniky, je v souladu s dřívějším termodynamickým pozorováním (kapitola 8), že pro vznik života je nezbytné převedení toku energie systémem na požadovanou práci, zejména pak konfigurační entropickou práci.

Polanyi8 zdůraznil, že mechanizmus a uspořádání živých organismů se nedají zjednodušit na zákony neživé hmoty. Uvádí, že zákony chemie a fyziky mají své matematické vyjádření ve formě diferenciálních rovnic. Existenci živých systémů lze porozumět jedině vymezením mezních stavů, které budou vyhovovat jak rovnicím, tak přírodě. Opouští nezodpovězenou otázku, jak se toto vymezení mezních stavů uskutečnilo, a naznačuje tak znovu potřebu nových zákonů.

Podobným způsobem potvrzuje Longuet-Higgins9, že fyzika a chemie jsou jako teoretická kostra biologie pojmově nedostatečné, a doporučuje věnovat mnohem vážnější pozornost biologickým problémům z hlediska tvaru, konstrukce a funkce.

Potřebu nových přírodních zákonů dále zdůraznil Schrödinger10 prostřednictvím paradoxu, jehož existenci si uvědomil v roce 1944. V neživé hmotě je pravidelnost a uspořádanost vždy průměrným výsledkem společného chování velkého množství molekul, na něž působí určité tlaky. V živých systémech se však uspořádané chování zdá být výsledkem aktivity jednotlivých molekul nebo velmi malých skupin molekul, přestože ze základních fyzikálních zákonů vyplývá, že by se jednotlivé molekuly měly chovat nahodilým způsobem. Pattee11 a Bohm12 diskutovali o tomto problému, ale nenalezli žádné uspokojivé řešení. Podle Bohma je ve skutečnosti jisté, že základní teorie nevysvětlí ani přesný přenos genetické informace, tím méně její vznik. Zároveň si všímá ironického obratu, že právě ve chvíli, kdy fyzika i chemie opouští mechanistické interpretace a nahrazuje je pravděpodobnostními, biologie je začíná přijímat.

Závěrem lze říci, že se příznivci nových přírodních zákonů nedomnívají, že by tok energie systémem byl převeden na uskutečnění práce potřebné k vytvoření první bílkoviny, DNA a konečně první živé buňky. Jednoduše poukazují na to, že je potřeba najít nové organizující principy, protože ty současné zjevně nepostačují. Potřeba nových zákonů je rozumným důvodem pro jejich hledání, ale k jejich formulaci a zachování je třeba důkazů. Inteligentní zařízení využívají část toku energie pro práci v lidském světě. Jak ale mohly takové energii měnící či převádějící prostředky vzniknout bez inteligence v anorganickém světě ještě před existencí života, je těžké vysvětlit.

panspermie

panspermie představuje klasický názor, že život vznikl mimo Zemi. Byl zformulován v 19. století poté, co Pasteur vyvrátil hypotézu samoplození a byl popularizován S. Arrheniem13 počátkem tohoto století. Podle tohoto názoru byla živá spóra přinesena tlakem elektromagnetického záření na Zemi odkudsi z vesmíru. Tato představa se někdy označuje jako radiopanspermie.

Arrhenius uvažoval, že zárodek o velikosti 0,1 - 3 µm mohl uniknout gravitačnímu poli Slunce a mohl být nesen vesmírem tlakem světelných vln. Ačkoliv je panspermie důmyslnou myšlenkou, selhává v důsledku tří důležitých faktorů:

1. panspermie ve skutečnosti neodpovídá na otázku vzniku života; pouze přemísťuje tento problém na jinou planetu nebo jiné místo ve vesmíru.

2. panspermie nevysvětluje ochranu zárodků života před smrtícími účinky intenzivního kosmického záření.

3. panspermie nenavrhuje žádný mechanizmus bezpečného průchodu zárodků zemskou atmosférou. Arrhenius uvažoval, že každý zárodek života o průměru větším než 1 µm by při vstupu do atmosféry shořel. Většina rostlinných a živočišných buněk má však průměr 10 - 40 µm.

Tyto problémy se ukázaly jako velmi závažné, a tak většina lidí opustila teorii panspermie jako neschopnou života. Poslední záblesky zájmu o panspermii zvolna zmizely v polovině padesátých let se vznikem moderních teorií pozemské abiogeneze.

Oživení zájmu o panspermii

V poslední době, v důsledku značných námitek proti scénářům chemické evoluce na Zemi, jejichž analýza tvoří hlavní náplň této knihy, došlo k oživení zájmu o panspermii, i když ta ve své podstatě nevysvětluje vznik života. Proč stále hledat odpověď na otázku vzniku života na Zemi, když přibývá závažných důkazů zpochybňujících pozemskou chemickou evoluci? Brooks a Shaw poznamenali: "Jestliže analyzujeme fakta, musí nás zajímat pravda a tuto pravdu nesmíme jakkoliv uzpůsobovat tak, aby nám to pomohlo pohodlně vysvětlit náš prapůvod způsobem, který nás z toho či onoho důvodu maximálně uspokojuje."14

Fred Hoyle a N. C. Wickramasinghe15 oživili zájem o panspermii. Jejich výpočty ukazují, že částice až do velikosti 60 µm (což zahrnuje většinu existujících buněk) by se mohly dostat na Zemi, "měkce" přistát a přitom by ani neshořely při vstupu do atmosféry, ani by se nerozpadly při dopadu.

Problém zachování života ve vesmíru zřejmě není tak nepřekonatelný, jak si představoval Arrhenius. Prostřednictvím radioastronomie byly ve vesmíru objeveny organické molekuly, mezi nimi i takové, které jsou obvykle považovány za prekurzory života (např. formaldehyd, metanol), což naznačuje, že jakási metoda jejich zachování zřejmě funguje. Tyto molekuly jsou zřejmě chráněny tenkými vrstvami grafitového prachu o tloušťce několika desetin mikronu, které tvoří štít před ničivými paprsky ultrafialového záření.

Nadto byly v meteoritech nalezeny aminokyseliny, z nichž některé tvoří důležitou součást proteinů. Murchisonský meteorit, který dopadl v roce 1969 v Austrálii, obsahoval D,L - aminokyseliny*, z nichž některé byly proteinogenní. Přítomnost D,L-aminokyselin byla považována za důkaz jejich mimozemského původu a doklad toho, že meteorit nebyl kontaminován stopami pozemského života. Tato skutečnost je důležitá, neboť meteorit dopadl do ovčí farmy, takže nebylo možné brát případnou kontaminaci na lehkou váhu.

Snad ještě významnější je nález aminokyselin v jiném meteoritu, kterému se připisuje stáří 3,83 miliardy let a který byl nalezen v hlubokém mrazu Antarktidy. Byl považován za důkaz mimozemského původu aminokyselin. Cyril Ponnamperuma, který vedl četné výzkumy na tomto poli, uvedl:

Zdá se, že procesy chemické evoluce jsou ve sluneční soustavě běžné... Nikdo nenalezl život mimo Zemi, ale všechny důkazy, které získáváme, ukazují tímto směrem. Jsem si jistý, že tam existuje.16

* Nedávno zveřejněné zprávy však tento výklad zpochybňují. Viz Michael H. Engel a Bartholomew Nagy, 1982. Nature 296, 837.

Navzdory Ponnamperumovu optimismu, který sdílí i jiní vědci, je význam těchto molekul z (a ve) vesmíru značně nejasný. Pokusíme se objasnit toto tvrzení následujícím příběhem. Vypráví se, že se jeden malý chlapec zeptal své matky, zda je pravda, že jsme vznikli z prachu a že se po smrti zase v prach proměníme. Po matčině přitakání chlapec vykřikl: "Někdo je tedy pod mou postelí, ale já nemohu říci, zda přichází nebo odchází." Hoch odvodil existenci "někoho" z přítomnosti prachu pod svou postelí na základě chybného předpokladu. Záležitost s molekulami ve vesmíru nápadně připomíná tento příběh. Tím, co zjevně vede některé vědce k jistotě o přítomnosti života ve vesmíru plynoucí z pouhé přítomnosti organických molekul, je jejich hypotéza, že život je ve vesmíru dosti běžný, neboť představuje pouze stupeň vývoje hmoty. Co jiného mohlo vést Ponnamperumu, když k přítomnosti života ve vesmíru řekl: "Jsem jistý, že tam existuje." Otázkou jistě zůstává, zda je tato hypotéza správná; nejedná se o axiom, z něhož lze vyvozovat závěry.

Nemůžeme nesouhlasit s potřebou alternativy k chemické evoluci. Vzhledem k tomu, že panspermie nenabízí žádnou teorii vzniku života, předpokládá implicitně přítomnost chemické evoluce na nějakém jiném místě ve vesmíru, které má pro její průběh mnohem příznivější podmínky než Země. Jak však vyplývá z principu jednotnosti, námitky, které byly vzneseny proti pozemské chemické evoluci, se musí týkat tohoto procesu i na jiných planetách. V jakémkoliv prostředí dospějeme ke skutečnosti, že přírodní síly, které působí samostatně, musejí být schopné dodat nezbytnou konfigurační entropickou práci pro vytvoření bílkovin, DNA a dalších molekul a také pro zformování vlastní buňky. Ze zkušenosti víme, že inteligentní badatelé mohou syntetizovat bílkoviny a vytvořit geny. Stále však nemáme žádný důkaz, že by toto bylo možné bez další pomoci pouze abiotickou cestou.

Vezmeme-li v úvahu, že z vesmíru byly získány pouze organické materiály, z nichž se život skládá, a ne život samotný, pak nám stále chybí ten rozhodující krok. Vytvoření života za těchto okolností by muselo proběhnout navzdory destruktivním silám diskutovaným v kapitole 4. Případ molekul nalezených ve vesmíru přispívá jen málo k vyřešení tajemství vzniku života. Jak bylo zdůrazněno v kapitole 4, dvě důležité okolnosti podmiňují vznik příhodných podmínek pro utvoření života : (1) zdroj molekul prekurzorů a (2) jejich ochrana až do jejich zabudování do živé struktury.

Navzdory problémům s panspermií však stále přibývá vědců, kteří ji obhajují.

řízená panspermie

Je třeba se zmínit i o další variantě panspermie nazývané řízená panspermie.17 Podstatou této hypotézy navržené Francis Crickem a Leslie Orgelem je myšlenka, že zárodky života byly na Zem poslány pomocí rakety mimozemskou inteligencí (ETI) nejpravděpodobněji z nějaké jiné galaxie. Existuje zde množství spekulací. ETI snad cílevědomě poslala zárodky života na Zem, aby na ní vytvořila jakousi "divočinu nebo ZOO"18 nebo snad kosmickou skládku.19 Je také možné, že zárodky života sem byly zaneseny nechtěně "někdy v dávných dobách na botách kosmonautů."20

Podobně jako o panspermii, i o řízenou panspermii se zajímalo jen málo vědců. A. Dauvillier se výstižně vyjádřil (již před vznikem teorie řízené panspermie, ale jeho slova jsou stále platná) :

Teorii kosmické panspermie si lze představit pouze tehdy, jestliže bude přijata myšlenka dopravy zárodků života cizími kosmonauty. To je ve skutečnosti povrchní hypotéza, výmluva, která se snaží vyhnout základnímu problému vzniku života.21

Většina vědců pravděpodobně souhlasí s Dauvillierem, který považuje panspermii řízenou mimozemskou inteligencí za produkt fantazie. Existují však určité nepřímé důkazy, které zvyšují její přitažlivost ve srovnání s myšlenkou panspermie. Podobně jako panspermie, všímá si i řízená panspermie existence významných problémů, které se týkají pozemské chemické evoluce, například rozporu mezi předpokládanou redukující dávnou atmosférou a mezi přibývajícími důkazy o jejím oxidujícím charakteru. Jak se zmínil Crick, jestliže by skutečně bylo pravda, že prebiotická atmosféra obsahovala podstatné množství kyslíku, bylo by obtížné si představit chemickou evoluci. V takovém případě, jak vysvětluje Crick, "by byla podpořena myšlenka řízené panspermie."22

Skutečností, která uchvátila Cricka, je, že se dávné organismy objevují ve zkamenělinách náhle, bez jakýchkoli stop existence prebiotické polévky nebo jednoduchých prekurzorů.23 Podle Cricka svědčí tato skutečnost pro teorii řízené panspermie. Crick a další však nemohou uvést žádný přesvědčivý důkaz podporující řízenou panspermii. Výše uvedená citace, týkající se řízené panspermie, by mohla být použita i pro panspermii. Nelze se pak podivovat Crickovu lamentování: "Pokaždé, když píšu článek o vzniku života, zapřísahám se, že už nikdy žádný nenapíšu, protože existuje příliš mnoho spekulací, které vycházejí z příliš malého množství faktů..."24

Další formou "důkazu", který je často používán na podporu existence ETI ve vesmíru, je Green Bank - Drakeova rovnice.25 Tato rovnice udává hodnotu N, což je počet rozvinutých civilizací, které nyní (pravděpodobně) udržují kontakt v oblasti mléčné dráhy,

N = RfpneflfifcfdL

kde R je rychlost vzniku hvězdy; fp, pravděpodobnost, že hvězda bude mít planety; ne, počet planet připadajících na hvězdu, které mají prostředí příznivé pro život; fl, pravděpodobnost vzniku života; fi, pravděpodobnost vzniku inteligentního života : fc, pravděpodobnost, že se inteligentní bytosti pokusí navázat mezihvězdný kontakt; fd, pravděpodobnost, že tyto bytosti chtějí navázat spojení; a L, doba života civilizace poté, co se dostane do stadia mezihvězdné komunikace.

Pomocí Green Bank-Drakeovy rovnice byly vytvořeny rozmanité odhady. Pohybují se v rozmezí od N = 1 (i tato hodnota odpovídá téměř obecnému předpokladu, že spontánní chemická evoluce jednou proběhla) do 108 nebo více. Široké spektrum hodnot přiřazovaných veličině N, které lze nalézt v literatuře, je odrazem vlivu subjektivních názorů těch, kteří vytvářejí příslušné odhady. Mnoho nadšenců považuje za rozumný závěr, že vesmír obývá snad milion rozvinutých společností. V USA bylo přijato několik projektů na federální úrovni (např. projekt OZMA), s cílem pátrat po mimozemské inteligenci (SETI). V literatuře se však objevuje stále více kritiky pojetí ETI. Například Frank Tipler pečlivě přezkoumal důvody hovořící pro ETI a poznamenal: "Problémem Drakeovy rovnice je, že experimentálně lze stanovit pouze hodnoty fp a menší měrou ne."26 I když přisoudíme každému výrazu hodnota obvykle udávanou při diskusích o mezihvězdných společenstvích, dospějeme k závěru, že "jsme sami."27

řízená panspermie, stejně jako samotná panspermie, postrádá vysvětlení vzniku života. Pouze předpokládá, že kdesi ve vesmíru v nějakém příznivém prostředí muselo dojít k jeho spontánnímu vzniku. řízená panspermie představuje v první řadě návrh mechanismu bezpečné dopravy života na Zem. Ano, inteligentní bytosti by jistě mohly vymyslet vhodnou kosmickou loď.

I přes nedostatek jakýchkoliv skutečných důkazů však mezi určitými vědci zájem o ETI vzrůstá.

Jedinečné stvoření stvořitelem z vesmíru

Hoyle a Wickermashinge28 předložili neobvyklou, podnětnou myšlenku, kterou zde dosti podrobně uvedeme. Jak uvidíme, objevují se dvě varianty inteligence, která vytváří biologickou specifitu: (1) tvořící inteligence ve vesmíru a (2) tvořící inteligence mimo vesmír. Při diskusi o vesmírné inteligenci Hoyle a Wickramasinghe tvrdí, že darwinismus jako vysvětlení vzniku života a vývoje pozemské biologie selhal.

Bez ohledu na to, jak rozsáhlé prostředí uvažujeme, nemohl být začátek života náhodný... existují asi dva tisíce enzymů a pravděpodobnost, že je všechny získáme při náhodném procesu je 1/ (1020)2000 = 1/ 1040 000, tedy tak neuvěřitelně malá, že by se nemohla projevit, i kdyby byl celý vesmír tvořen organickou polévkou.

Nejsme-li předem ovlivněni společenským povědomím nebo vědeckým přesvědčením, že život vznikl na Zemi, vyřazuje tento jednoduchý výpočet myšlenku pozemského vzniku života zcela z dalších úvah... obrovský informační obsah dokonce i nejjednodušších živých systémů... nemůže být podle našeho názoru vytvořen tím, co je často označováno jako "přirozené" procesy, tedy například pomocí meteorologických a chemických dějů probíhajících na povrchu planety bez života... Aby život na Zemi vznikl, bylo by nezbytné dodat zcela jednoznačné instrukce pro jeho zformování... Neexistuje způsob, jak obejít potřebu informace. Jednoduše nevystačíme s větší a lepší organickou polévku, v což jsme ještě před rokem nebo dvěma sami doufali.29

Dosavadní logika říká, že obvyklý názor na vznik života chemickou evolucí v organické chemické polévce je příliš nepravděpodobný. Informační obsah živých buněk je příliš velký, než aby bylo možné očekávat, že se vytvořil "přirozenými" prostředky.

Přiměřená teorie vzniku života vyžaduje zdroj informací schopný dát vzniknout chemické složitosti. Hoyle a Wickramasinghe tvrdí, že toto představuje zdrcující důkaz, že inteligence zajistila informace a vytvořila život.

Domníváme se, že... inteligence vymyslela biochemické látky a způsobila vznik života obsahujícího uhlík... Za použití atlasu, který uvádí sekvence aminokyselin všech enzymů, by mohli biochemici tyto enzymy vytvořit s naprostou přesností, což dokládá ohromnou nadřazenost inteligence spojené se znalostmi nad slepými náhodnými procesy... Jakákoliv teorie s pravděpodobností správnosti větší než 1/ 1040000 musí být posuzována jako nadřazená náhodnému ději. Podle našeho názoru je pravděpodobnost toho, že teorie o vytvoření života inteligencí představuje správné vysvětlení mnoha nepochopitelných skutečností diskutovaných v předchozích kapitolách, podstatně větší než 1/1040000 ... Paley přirovnává přesnost živého světa k výborně udělaným hodinkám. Dále uvádí, že právě tak jako hodinky vděčí za svůj vznik hodináři, musí svět Přírody vděčit za svůj vznik Stvořiteli, Bohu... Ukazuje se, že úvahy z knihy The Origin of Species (O původu druhů) jsou chybné... Je ironií, že zatímco vědecká fakta odsunují Darwina stranou, vrací se William Paley, který byl více než sto let terčem posměchu vědeckého světa, zpět jako možný konečný vítěz... tato teorie je skutečně tak jasná, že je div, proč není obecně přijímána. Důvody jsou spíše psychologické než vědecké.30

Jak ukázali Hoyle a Wickramasinghe, zastávání tohoto názoru na stvoření života v sobě zahrnuje prvek úmyslnosti.

Odpor, který pociťují biologové k myšlence, že by účel mohl mít místo ve struktuře biologie, je tedy odporem vůči představě, že by biologie mohla být spojena s inteligencí, která je větší než naše vlastní.

Každý školák už jistě předpokládá, že Hoyle a Wickramasinghe nabízejí světu tradiční chápání Jedinečného Stvořitele. Ale omyl! Hoyle a Wickramasinghe popírají, že by stvořitelem byl tradiční nadpřirozený Bůh. Vidí stvořitele v celém vesmíru. Tvrdí, že existuje mezera v logice, která generacím vědců brání v poznání skutečnosti, že inteligence je původním zdrojem informace v biologickém světě.

Celek jedinečné teorie stvoření byl považován za chybný a mezi vědci vůči ní existoval obecný odpor. V podstatě, protože byly detaily považovány za nesprávné, byla odmítnuta i základní myšlenka života stvořeného inteligencí... Jestliže definujeme "stvoření" jako příchod na Zem z vnějšku, jednotkou stvoření je v našem pojetí gen, nikoliv fungující soubor genů, který označujeme jako druh.32

Přínosem tohoto názoru je, že pravděpodobně řeší hlavní problém, tedy vznik života, který obě teorie panspermie pouze obešly. Je navrhován skutečný vznik nejprve genů, ale i bakteriálních buněk. Důsledkem je, že k bezpečné dopravě genů na Zem může být využit mechanizmus popsaný v teorii panspermie bez potřeby čehokoliv tak složitého, jako je kosmická loď. Geny nebo jejich fragmenty mají velikost 0,1 - 3 µm, mohly by tedy být snadno přenášeny